Part Number Hot Search : 
XC2S50 LT3080 BCM5705 BSERIES BSERIES M62356P 3B1S2HCA EP110
Product Description
Full Text Search
 

To Download SLA7032 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 2-Phase/1-2 Phase Excitation
SLA7032M/SLA7033M
2-Phase Stepper Motor Unipolar Driver ICs
sAbsolute Maximum Ratings
Parameter Motor supply voltage Control supply voltage FET Drain-Source voltage TTL input voltage SYNC terminal voltage Reference voltage Sense voltage Output current Power dissipation Channel temperature Storage temperature Symbol VCC VS VDSS VIN VSYNC VREF VRS IO PD1 PD2 Tch Tstg Ratings SLA7032M 46 46 100 -0.3 to +7 -0.3 to +7 -0.3 to +7 -5 to +7 1.5 4.5 (Without Heatsink) 35 (Tc = 25C) +150 -40 to +150 3 SLA7033M (Ta=25C) Units V V V V V V A W W C C
sElectrical Characteristics
Ratings Parameter Symbol min Control supply current Control supply voltage FET Drain-Source voltage FET ON voltage FET diode forward voltage FET drain leakage current IS Condition VS VDSS Condition VDS Condition VSD Condition IDSS SLA7032M typ 10 VS=44V 24 VS=44V, IDSS=250A 0.6 ID=1A, VS=14V 1.1 ISD=1A ISD=3A 250 VDSS=100V, VS=44V 2.0 ID=3A 0.8 VDSS=100V 2.0 VDSS=100V 0.8 ID=3A 1 VS=44V, VI=0 or 5V 4.0 Synchronous chopping mode 0.8 Asynchronous chopping mode 0.1 VS=44V, VYS=5V -0.1 VS=44V, VYS=0V 0 Reference voltage input 4.0 Output FET OFF 1 No synchronous trigger 40 Resistance between GND and REF terminal at synchronous trigger 0.5 VS=24V, ID=1A 0.7 VS=24V, ID=1A 0.1 VS=24V, ID=1A 12 VS=24V 5.5 2.0 V mA V V V ID=3A, VS=14V 2.3 max 15 44 min SLA7033M typ 10 VS=44V 24 VS=44V, IDSS=250A 0.85 Units max 15 44
mA V V V V
10 100
10 100
OUT
DC characteristics
IN terminal OUT
Input current
Input voltage SYNC terminal Input current
Input current REF terminal Input current
Internal resistance
Switching time
Chopping OFF time
250 Condition VDSS=100V, VS=44V VIH 2.0 Condition ID=1A VIL 0.8 Condition VDSS=100V VIH 2.0 Condition VDSS=100V VIL 0.8 Condition ID=1A II 1 Condition VS=44V, VI=0 or 5V VSYNC 4.0 Condition Synchronous chopping mode VSYNC 0.8 Condition Asynchronous chopping mode ISYNC 0.1 Condition VS=44V, VYS=5V ISYNC -0.1 Condition VS=44V, VYS=0V VREF 0 2.0 Condition Reference voltage input VREF 4.0 5.5 Condition Output FET OFF IREF 1 Condition No synchronous trigger RREF 40 Condition Resistance between GND and REF terminal at synchronous trigger Tr 0.5 Condition VS=24V, ID=1A Tstg 0.7 Condition VS=24V, ID=1A Tf 0.1 Condition VS=24V, ID=1A TOFF 12 Condition VS=24V
A
A
A
AC characteristics
s
s
28
SLA7032M/SLA7033M
2-Phase Stepper Motor Unipolar Driver IC (2-Phase/1-2 Phase Excitation)
SLA7032M/SLA7033M
sInternal Block Diagram
1 8 6 5 7 12 17 16 11 18
Vs A
Vs B
IN B
IN A
IN A
IN B
1, 8, 11, 18pin Description of pins
Reg. Oscillator MOSFET gate drive circuit
Synchronous chopping circuit
Reg. Chopping blanking timer (5 s typ) Oscillator MOSFET gate drive circuit
Synchronous chopping circuit
Chopping blanking timer (5 s typ)
Chopping OFF timer (12 s typ)
+ -
+ -
Chopping OFF timer (12 s typ)
1pin 8pin 11pin 18pin
Excitation input Active H Active L OUT A OUT A OUT A OUT A OUT B OUT B OUT B OUT B
SYNC A
SYNC B
REF A
REF B
Rs A
9
2
4
3
14
15
13
10
sDiagram of Standard External Circuit (Recommended Circuit Constants)
Active High
Vcc (46Vmax)
Excitation signal time chart 2-phase excitation
clock INA INA INB INB
INA INA INB INB Active High
Rs B
GA
GB
+
7 VsA 2 Vb (5V)
12 VsB
8
1
18
11
OUTA OUTA OUTB OUTB INA 6
0 H L H L
1 L H H L
2 L H L H
3 H L L H
0 H L H L
1 L H H L
r1 : 4k r2 : 1k(VR) Rs : 1 typ(7032M) (1 to 2W) 0.68 typ(7033M)
SYNC A SLA7032M SLA7033M SYNC B
INA 5 INB 17 INB 16
13
1-2 phase excitation
r1 RsA 9 Rs r2 REFA REFB RsB 3 14 10 Rs GA 4 GB 15
clock INA INA INB INB
0 H L L L
1 H L H L
2 L L H L
3 L H H L
4 L H L L
5 L H L H
6 L L L H
7 H L L H
0 H L L L
1 H L H L
2 L L H L
3 L H H L
Active Low
Vcc (46Vmax)
Excitation signal time chart 2-phase excitation
clock INA INA INB INB
INA INA INB INB Active Low
+
7 VsA 2 Vb (5V)
12 VsB
8
1
18
11
OUTA OUTA OUTB OUTB INA 6
0 L H L H
1 H L L H
2 H L H L
3 L H H L
0 L H L H
1 H L L H
r1 : 4k r2 : 1k(VR) Rs : 1 typ(7032M) (1 to 2W) 0.68 typ(7033M)
SYNC A SLA7032M SLA7033M SYNC B
INA 5 INB 17 INB 16
13
1-2 phase excitation
clock INA INA INB INB 0 L H H H 1 L H L H 2 H H L H 3 H L L H 4 H L H H 5 H L H L 6 H H H L 7 L H H L 0 L H H H 1 L H L H 2 H H L H 3 H L L H
r1
RsA 9 Rs
REFA REFB RsB 3 14 10 Rs
GA 4
GB 15
r2
SLA7032M/SLA7033M
29
2-Phase Stepper Motor Unipolar Driver IC (2-Phase/1-2 Phase Excitation)
SLA7032M/SLA7033M
sExternal Dimensions
3.20.15
310.2 24.40.2 16.40.2
(Unit: mm)
3.20.15x3.8
4.80.2 1.70.1
9.9 0.2
6.70.5
R-End 0.65 -0.1
+0.2
9.7 -0.5
+1
1 -0.1 17xP1.680.4=28.561
+0.2
(3)
0.65 -0.1
1 -0.1
0.55 -0.1 40.7
+0.2
17xP1.680.4=28.561
31.30.2
1 2 3 * * * * * * * 18
123 * * * * * * * 18
Forming No. No.871
Forming No. No.872
30
SLA7032M/SLA7033M
0.55 -0.1 1.6 0.6
+0.2
+0.2
+0.2
2.20.6 60.6 7.50.6
3 0.6
Part No. Lot No.
2.450.2
4.6 0.6
3. 4. 5.
16 0.2
13 0.2
2-Phase Stepper Motor Unipolar Driver IC (2-Phase/1-2 Phase Excitation)
SLA7032M/SLA7033M
Application Notes
sOutline
SLA7032M (SLA7033M) is a stepper motor driver IC developed to reduce the number of external parts required by the conventional SLA7024M (SLA7026M). This IC successfully eliminates the need for some external parts without sacrificing the features of SLA7024M (SLA7026M). The basic function pins are compatible with those of SLA7024M (SLA7026M).
the SYNC terminals open because they are for CMOS input. Connect TTL or similar to the SYNC terminals and switch the SYNC terminal level high or low. When the motor is not running, set the TTL signal high (SYNC terminal voltage: 4 V or more) to make chopping synchronous. When the motor is running, set the TTL signal low (SYNC terminal voltage: 0.8 V or less) to make chopping asynchronous. If chopping is set to synchronous at when the motor is running, the motor torque deteriorates before the coil current reaches the set value. If no abnormal noise occurs when the motor is not running, ground the SYNC terminals (TTL not necessary).
sNotes on Replacing SLA7024M (SLA7026M)
SLA7032M (SLA7033M) is pin-compatible with SLA7024M (SLA7026M). When using the IC on an existing board, the following preparations are necessary: (1) Remove the resistors and capacitors attached for setting the chopping OFF time. (r3, r4, C1, and C2 in the catalog) (2) Remove the resistors and capacitors attached for preventing noise in the detection voltage VRS from causing malfunctioning and short the sections from which the resistors were removed using jumper wires. (r5, r6, C3, and C4 in the catalog) (3) Normally, keep pins 2 and 13 grounded because their functions have changed to synchronous and asynchronous switching (SYNC terminals). For details, see "Circuit for Preventing Abnormal Noise When the Motor Is Not Running (Synchronous circuit)." (Low: asynchronous, High: synchronous)
SYNC_A TTL, etc. SYNC_B
SLA7032M SLA7033M SYNC voltage : Low Chopping asynchronous SYNC voltage : High Chopping synchronous
sCircuit for Preventing Abnormal Noise When the Motor Is Not Running (Synchronous Circuit)
A motor may generate abnormal noise when it is not running. This phenomenon is attributable to asynchronous chopping between phases A and B. To prevent the phenomenon, SLA7032M (SLA7033M) contains a synchronous chopping circuit. Do not leave
5V
The built-in synchronous chopping circuit superimposes a trigger signal on the REF terminal for synchronization between the two phases. The figure below shows the internal circuit of the REF terminal. Since the VREF varies depending on the values of R1 and R2, determine these values for when the motor is not running within the range where the two phases are synchronized.
R1 VREF R2 3 14 REF_A REF_B 40 (typ.) 40 (typ.) VREF waveform VREF 0
To comparator (high impedance)
SLA7032M SLA7033M
Sync/async switching signal ONE SHOT (tw=2 S) FET A/A gate drive signal
ONE SHOT (tw=2 S)
FET B/B gate drive signal
Synchronous circuit operating waveform
VREF Phase A 0 VRS VREF Phase B 0 VRS Synchronous circuit OFF Synchronous circuit ON
SLA7032M/SLA7033M
31
2-Phase Stepper Motor Unipolar Driver IC (2-Phase/1-2 Phase Excitation)
SLA7032M/SLA7033M
sDetermining the Output Current
Fig. 1 shows the waveform of the output current (motor coil current). The method of determining the peak value of the output current (IO) based on this waveform is shown below. (Parameters for determining the output current IO) Vb: Reference supply voltage r1,r2: Voltage-divider resistors for the reference supply voltage RS: Current sense resistor (1) Normal rotation mode IO is determined as follows when current flows at the maximum level during motor rotation. (See Fig.2.) IO r2 r1+r2
*
Fig. 1 Waveform of coil current (Phase A excitation ON)
IO Phase A 0 Phase A
Vb ................................................................ (1) RS
Fig. 2 Normal mode
Vb(5V) r1 3,(14) r2 9,(10) RS
(2) Power down mode The circuit in Fig.3 (rx and Tr) is added in order to decrease the coil current. IO is then determined as follows. IOPD 1+ 1 r1(r2+rX) r2 * rX 1 1 r1 Vb Rs * IOPD -1 - 1 r2
*
Vb ......................................................... (2) RS
Equation (2) can be modified to obtain equation to determine rx. rX=
Fig. 3 Power down mode
Vb(5V) r1
Fig. 4 and 5 show th e graphs of equations (1) and (2) respectively.
3,(14) 9,(10)
rX Power down signal Tr
r2
Fig. 4 Output current IO vs. Current sense resistor RS
Fig. 5 Output current IOPD vs. Variable current sense resistor rx
4
2.0
2
r2 * Vb r1+r2 RS r1=510 r2=100 rx= Vb=5V IO=
Output current IOPD (A)
Output current IO (A)
3
1.5
RS =0.5 1 * Vb r1(r2+rX) RS 1+ r2 * rX r1=510 r2=100 Vb=5V IOPD=
1.0
RS =0.8 RS =1
1
0.5
0
0
1
2
3
4
00
200
400
600
800
1000 1200
Current sense resistor RS ()
Variable current sense resistor rX ()
32
SLA7032M/SLA7033M
2-Phase Stepper Motor Unipolar Driver IC (2-Phase/1-2 Phase Excitation)
SLA7032M/SLA7033M
sThermal Design
An outline of the method for calculated heat dissipation is shown below. (1) Obtain the value of PH that corresponds to the motor coil current IO from Fig. 6 "Heat dissipation per phase PH vs. Output current IO." (2) The power dissipation Pdiss is obtained using the following formula. 2-phase excitation: Pdiss 2PH+0.015xVS (W) 3 PH+0.015xVS (W) 2 (3) Obtain the temperature rise that corresponds to the computed value of Pdiss from Fig. 7 "Temperature rise." 1-2 phase excitation: Pdiss Fig. 6 Heat dissipation per phase PH vs. Output current IO
SLA7032M
1.2
Heat dissipation per phase PH (W)
SLA7033M
4.0
Heat dissipation per phase PH (W)
1.0 0.8 0.6 0.4 0.2 0
44 C= V 24V
1
3.0
=4 4 V
VC
1.0
0
0.2
0.4 0.6 0.8 Output current IO (A)
1.0
0 0
1.0 2.0 Output current IO (A)
36
V
Motor : 23LM-C004 Holding mode 5V
24
2.0
VC
C
V
15
V 36
V
Motor : 23PM-C503 Holding mode
3.0
Fig. 7 Temperature rise
150
T
j
100
Tj-a TC-a (C)
C T
Natural cooling Without heatsink
50
0
0
1
2 3 Total Power (W)
4
5
Thermal characteristics
SLA7032M
30
SLA7033M
50
Case temperature rise TC-a (C)
25 20
Case temperature rise TC-a (C)
Without heatsink Natural cooling
Without heatsink Natural cooling
40
TC ( 4 pin)
15 10 5 0 200
30
TC( 4 pin) Motor : 23PM-C705 Motor current IO=1.5A Ta=25C VCC=24V, VS=24V 2-phase excitation
Motor : PH265-01B Motor current IO=0.8A Ta=25C VCC=24V, VS=24V 2-phase excitation
20
10
500
1K
0 100
500
1K
5K
Response frequency (pps)
Response frequency (pps)
SLA7032M/SLA7033M
33
2-Phase Stepper Motor Unipolar Driver IC (2-Phase/1-2 Phase Excitation)
SLA7032M/SLA7033M
sSupply Voltage VCC vs. Supply Current ICC
SLA7032M
500
1.5
SLA7033M
Supply current ICC (mA)
400
Supply current ICC (A)
300
Motor : 23LM-C004 1-phase excitation Holding mode IO : Output current IO=1A
1.0
200
Motor : 23PM-C503 1-phase excitation Holding mode IO : Output current IO=3A IO=2A
0.5
100
0
0.5A 0.2A
0 10 20 30 40 50
IO=1A
0 0 10 20 30 40 50
Supply voltage VCC (V)
Supply voltage VCC (V)
sTorque Characteristics
SLA7032M
2.0 6.0 5.0
Pull-out torque (kg-cm)
SLA7033M
Pull-out torque (kg-cm)
1.5
4.0 3.0 2.0 1.0
1.0
Motor : 23LM-C202 Output current IO =0.8A Motor supply voltage VCC =24V 2-phase excitation
Motor : 23PM-C705 Output current IO =2.5A Motor supply voltage VCC =24V 2-phase excitation
0.5
0
100
500
1K
5K
0
100
500
1K
5K
10K
Response frequency (pps)
Response frequency (pps)
34
SLA7032M/SLA7033M
2-Phase Stepper Motor Unipolar Driver IC (2-Phase/1-2 Phase Excitation)
SLA7032M/SLA7033M
sChopper frequency vs. Supply voltage
sChopper frequency vs. Output current
50
50
40
40
f (kHz)
20
Motor : 23LM-C202 IO = 0.8A at VCC=24V RS=1
f (kHz)
30
30
20
Motor : 23LM-C202 VCC=24V RS=1
10
10
0
0
10
20
30
40
50
0
0
0.2
0.4
0.6
0.8
1.0
VCC (V)
IO (A)
sNote
The excitation input signals of the SLA7032M, SLA7033M can be used as either Active High or Active Low. Note, however, that the corresponding output (OUT) changes depending on the input (IN). Active High Input INA (pin6) INA (pin5) INB (pin17) INB (pin16) Corresponding output OUTA (pin1) OUTA (pin8) OUTB (pin11) OUTB (pin18) Active Low Input INA (pin6) INA (pin5) INB (pin17) INB (pin16) Corresponding output OUTA (pin8) OUTA (pin1) OUTB (pin18) OUTB (pin11)
sHandling Precautions
The input terminals of this product use C-MOS circuits. Observe the following precautions. q Carefully control the humidity of the room to prevent the buildup of static electricity. Since static electricity is particularly a problem during the winter, be sure to take sufficient precautions. q Take care to make sure that static electricity is not applied to the IC during wiring and assembly. Take precautions such as shorting the terminals of the printed wiring board to ensure that they are at the same electrical potential.
SLA7032M/SLA7033M
35


▲Up To Search▲   

 
Price & Availability of SLA7032

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X